Multiple Testing via Fdr for Large Scale Imaging Data.
نویسندگان
چکیده
The multiple testing procedure plays an important role in detecting the presence of spatial signals for large scale imaging data. Typically, the spatial signals are sparse but clustered. This paper provides empirical evidence that for a range of commonly used control levels, the conventional FDR procedure can lack the ability to detect statistical significance, even if the p-values under the true null hypotheses are independent and uniformly distributed; more generally, ignoring the neighboring information of spatially structured data will tend to diminish the detection effectiveness of the FDR procedure. This paper first introduces a scalar quantity to characterize the extent to which the "lack of identification phenomenon" (LIP) of the FDR procedure occurs. Second, we propose a new multiple comparison procedure, called FDR(L), to accommodate the spatial information of neighboring p-values, via a local aggregation of p-values. Theoretical properties of the FDR(L) procedure are investigated under weak dependence of p-values. It is shown that the FDR(L) procedure alleviates the LIP of the FDR procedure, thus substantially facilitating the selection of more stringent control levels. Simulation evaluations indicate that the FDR(L) procedure improves the detection sensitivity of the FDR procedure with little loss in detection specificity. The computational simplicity and detection effectiveness of the FDR(L) procedure are illustrated through a real brain fMRI dataset.
منابع مشابه
Sequential Monte Carlo multiple testing
MOTIVATION In molecular biology, as in many other scientific fields, the scale of analyses is ever increasing. Often, complex Monte Carlo simulation is required, sometimes within a large-scale multiple testing setting. The resulting computational costs may be prohibitively high. RESULTS We here present MCFDR, a simple, novel algorithm for false discovery rate (FDR) modulated sequential Monte ...
متن کاملA general method for accurate estimation of false discovery rates in identification of differentially expressed genes
UNLABELLED The 'omic' data such as genomic data, transcriptomic data, proteomic data and single nucleotide polymorphism data have been rapidly growing. The omic data are large-scale and high-throughput data. Such data challenge traditional statistical methodologies and require multiple tests. Several multiple-testing procedures such as Bonferroni procedure, Benjamini-Hochberg (BH) procedure and...
متن کاملTesting Jumps via False Discovery Rate Control
Many recently developed nonparametric jump tests can be viewed as multiple hypothesis testing problems. For such multiple hypothesis tests, it is well known that controlling type I error often makes a large proportion of erroneous rejections, and such situation becomes even worse when the jump occurrence is a rare event. To obtain more reliable results, we aim to control the false discovery rat...
متن کاملComment: Microarrays, Empirical Bayes and the Two-Group Model
Professor Efron is to be congratulated for his innovative and valuable contributions to large-scale multiple testing. He has given us a very interesting article with much material for thought and exploration. The twogroup mixture model (2.1) provides a convenient and effective framework for multiple testing. The empirical Bayes approach leads naturally to the local false discovery rate (Lfdr) a...
متن کاملMultiple testing in disease mapping and descriptive epidemiology.
The problem of multiple testing is rarely addressed in disease mapping or descriptive epidemiology. This issue is relevant when a large number of small areas or diseases are analysed. Control of the family wise error rate (FWER), for example via the Bonferroni correction, is avoided because it leads to loss of statistical power. To overcome such difficulties, control of the false discovery rate...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Annals of statistics
دوره 39 1 شماره
صفحات -
تاریخ انتشار 2011